Extending the glucosyl ceramide cassette approach: application in the total synthesis of ganglioside GalNAc-GM1b.

نویسندگان

  • Miku Konishi
  • Akihiro Imamura
  • Kohki Fujikawa
  • Hiromune Ando
  • Hideharu Ishida
  • Makoto Kiso
چکیده

The development of a novel cyclic glucosyl ceramide cassette acceptor for efficient glycolipid syntheses was investigated. p-Methoxybenzyl (PMB) groups were selected as protecting groups at C2 and C3 of the glucose residue with the aim of improving the functionality of the cassette acceptor. The choice of the PMB group resulted in a loss of β-selectivity, which was corrected by using an appropriate tether to control the spatial arrangement and the nitrile solvent effect. To investigate the effect of linker structure on the β-selectivity of intramolecular glycosylation, several linkers for tethering the glucose and ceramide moiety were designed and prepared, namely, succinyl, glutaryl, dimethylmalonyl, and phthaloyl esters. The succinyl ester linker was the best for accessing the cassette form. The newly designed glucosyl ceramide cassette acceptor was then applied in the total synthesis of ganglioside GalNAc-GM1b.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and characterization of a novel monosialosylpentahexosyl ceramide from Tay-Sachs brain.

A novel monosialoganglioside was isolated from Tay-Sachs brains. It represented about 0.1% of the total ganglioside mixture. Compositional analysis by gas-liquid chromatography indicated that it contained glucose, galactose, N-acetylgalactosamine, N-acetylneuraminic acid, and long chain base in the molar ratio of 1:2:2:1:1. The ganglioside was found to be resistant to neuraminidase (Clostridium...

متن کامل

New Aspects of Silibinin Stereoisomers and their 3-O-galloyl Derivatives on Cytotoxicity and Ceramide Metabolism in Hep G2 hepatocarcinoma Cell Line

Ceramide as a second messenger is a key regulator in apoptosis and cytotoxicity. Ceramide-metabolizing enzymes are ideal target in cancer chemo-preventive studies. Neutral sphingomyelinase (NSMase), acid ceramidase (ACDase) and glucosyl ceramide synthase (GCS) are the main enzymes in ceramide metabolism. Silymarin flavonolignans are potent apoptosis inducers and silibinin is the most active com...

متن کامل

Isolation and characterization of ganglioside GMlb

Yip (1) first demonstrated the enzymatic synthesis of a sialidase-susceptible monosialoganglioside from ganglioN-tetraosyl ceramide (GgOse&er) and CMP-sialic acid using rat brain homogenate as the source of the sialosyltransferase. Subsequently the structure of this ganglioside was characterized as IVSNeuAcGgOse4Cer, and was named G M I ~ (1, 2). GM1b ganglioside has since been recognized in va...

متن کامل

New Aspects of Silibinin Stereoisomers and their 3-O-galloyl Derivatives on Cytotoxicity and Ceramide Metabolism in Hep G2 hepatocarcinoma Cell Line

Ceramide as a second messenger is a key regulator in apoptosis and cytotoxicity. Ceramide-metabolizing enzymes are ideal target in cancer chemo-preventive studies. Neutral sphingomyelinase (NSMase), acid ceramidase (ACDase) and glucosyl ceramide synthase (GCS) are the main enzymes in ceramide metabolism. Silymarin flavonolignans are potent apoptosis inducers and silibinin is the most active com...

متن کامل

بررسی مقایسه ای اثرات رزمارینیک اسید وکارنوزیک اسید بر بقای سلولی، متابولیسم سرآمید و واکنش های آنزیم های آنتی اکسیدانت در سلول های سرطانی رده Hep - G 2

Carnosic acid and Rosmarinic acid are family of polyphenols that are found in Rosmary plant. They have property biological behaviors such as anti-cancer, anti-viral and anti-oxidants. This study compared the effects of these two compounds based on ceramide metabolism in cell line of Hep- G2. In this experimental study, Hep-G2 cells were cultured in DMEM supplemented containing bovine fetal seru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecules

دوره 18 12  شماره 

صفحات  -

تاریخ انتشار 2013